

DEEP BOREHOLE DISPOSAL: AN ALTERNATIVE TO THE MINED & ENGINEERED REPOSITORY FOR HIGH-LEVEL WASTES

WHAT

HOW

WHY

Fergus Gibb

Immobilisation Science Laboratory,
Department of Engineering Materials,
University of Sheffield

GEOLOGICAL DISPOSAL

Emplacement in the Earth's crust with no intent to retrieve

Deep Boreholes

(= Very deep disposal)

Important differences in detail between versions

Creating the borehole

- Drill the first stage of the borehole
- Insert the casing.
- Pour a cement base-plug.
- Drill the next stage of the borehole.
- Insert the casing.
- Pour the cement base-plug
- Drill the next stage of the borehole

And so on, down to > 4 kms

0.5 - 0.6 m diameter

Low Temperature Very Deep Disposal

Vitrified waste

- Insert the final run of casing (Surface to TD)
- Emplace the first batch of HLW canisters
- Pump in the special grout and allow it to set

Low Temperature Very Deep Disposal

Vitrified waste

- Insert bentonite clay (Optional seal)
- Insert another batch of canisters, pour the grout & allow to set

Repeat until the bottom km of the borehole is filled

4 kms

Sealing the borehole

Insert some backfill (crushed granite)

Insert heater and melt backfill & wall-rock to seal the borehole

Pour in more backfill and seal the borehole again

Repeat as often as required then fill the rest of the borehole with backfill

3 km deep (topmost canister)

Advantages of Deep Boreholes

- 1. SAFETY
- 2. COST EFFECTIVE
- 3. ENVIRONMENTAL IMPACT
- 4. SMALL 'FOOTPRINT'
- 5. SITE AVAILABILITY
- 6. SECURITY
- 7. INSENSITIVE to HLW COMPOSITION
- 8. LONGEVITY
- 9. EARLY IMPLEMENTATION

SAFETY CASE

1. PRE-DEPLOYMENT

Removal from store

Overpacking (Stainless? + Deployment fittings)

Transport to well-head (Horizontal?)

Transfer to well-head facility (Shielded)

2. OPERATIONAL

Reorientation to vertical (If transported horizontally)
Insertion into borehole
Lowering to final position
Release of waste package
Grouting/support matrix
Sealing borehole

3. POST-CLOSURE

Near field Far field

After Gibb, Travis, McTaggart & Burley (2008)

COST EFFECTIVE (LTVDD-1)

0.5 m Borehole to 4 km = £25 - 35 M

With up to 50% savings for multi-borehole programme (J. Beswick, 2008)

No. of packages per hole = 650 - 700

UK Total HLW containers = 7,250

(2007 UK Inventory, current & future arisings)

No. of 4 km holes required = 10 - 11

Approximate cost = £210 - £330 M

(Assuming minimum savings per hole of 15%)

NDA R.R.C. (ILW + HLW) = \sim £14 Billion

SITE AVAILABILITY

Suitable basement underlies much of the continental crust

Within 3 km of surface in many places

Potentially good site availability

Small footprint

Waste producers (e.g. NDA, MoD) could already own, & volunteer, suitable sites.

EARLY IMPLEMENTATION

Small diameter test drillings

(Incl. geological & hydrogeological evaluation)

1 – 2 years

Disposal borehole to 4 km

~ 1 year

HLW emplacement

~ 2 years

Sealing & Backfilling

< 1 year

Time to first completion

~ 5 – 6 years

Advantages of Deep Boreholes

- 1. SAFETY
- 2. COST
- 3. ENVIRONMENTAL IMPACT
- 4. SMALL 'FOOTPRINT'
- 5. SITE AVAILABILITY
- 6. SECURITY
- 7. INSENSITIVE to HLW COMPOSITION
- 8. LONGEVITY
- 9. EARLY IMPLEMENTATION
- 10.ACCEPTABILITY?

DBD is an option we can't afford to ignore for the HLWs to which it is especially suited.

It is not a technology that can be dismissed as "immature" requiring decades of development.

Thank you.