

Preliminary Performance Assessment of Deep Borehole Disposal

Pat Brady, Bill Arnold, Geoff Freeze, Steve Bauer, and Peter Swift Sandia National Laboratories

surface

Geochemical Constraints over the Source Term

Solubilities; $T = 200^{\circ}C$, pH 8.5, $E_H = -300$ mV, 2M NaCl solution

Radioelement	Solubility-limiting phase	Dissolved concentration (moles/L)
Am	Am_2O_3	1 x 10 ⁻⁹
Ac	Ac_2O_3	1 x 10 ⁻⁹
С	*	*
Cm	Cm_2O_3	1 x 10 ⁻⁹
Cs	*	*
I	Metal iodides ?	*
Np	NpO_2	1.1 x 10 ⁻¹⁸
Pa	PaO_2	1.1 x 10 ⁻¹⁸
Pu	PuO_2	9.1 x 10 ⁻¹²
Ra	RaSO ₄	*
Sr	SrCO ₃ , SrSO ₄ ?	*
Тс	${ m TcO}_2$	4.3 x 10 ⁻³⁸
Th	${ m ThO}_2$	6.0 x 10 ⁻¹⁵
U	UO_2	1.0 x 10 ⁻⁸

Source term and Borehole K_ds.

Element	k _{d basement}	k _{d sediment}	k _{d bentonite}
Am, Ac, Cm	50-5000	100-100,000	300-29,400
С	0-6	0-2000	5
Cs	50-400	10-10,000	120-1000
Np, Pa	10-5000	10-1000	30-1000
Pu	10-5000	300-100,000	150-16,800
^с Ra	4-30	5-3000	50-3000
Sr	4-30	5-3000	50-3000
Тс	0-250	0-1000	0-250
Th	30-5000	800-60,000	63-23,500
U	4-5000	20-1700	90-1000
Ι	0-1	0-100	0-13

Thermal Conduction

- Assumed disposal of a single PWR fuel assembly per waste package
- Thermal output for an average fuel assembly that has been aged for 25 years
- Results indicate a maximum temperature increase of about 30°C at the borehole wall, similar to the results in the draft report of Sapile and Driscoll (2009)
- Significant temperature increases do not persist beyond 100 to 200 years

Thermal Conduction

- Similar analysis performed for vitrified high-level waste
- Heat output curves are for the current vitrified waste from reprocessing of commercial spent nuclear fuel in France, aged for 10 years
- Results indicate a temperature increase of about 125 °C at the borehole wall, which is significantly higher than the for disposal of PWR spent nuclear fuel assemblies

Coupled Thermal-Hydrologic Model

Constant Temperature 60 deg C Constant Hydrostatic Pressure

Constant Hydrostatic Pressure

- Radial 2-D simulations conducted using the FEHM code
- Thermal properties were consistent with the thermal conduction modeling
- Granite was assigned a permeability of 1 X 10⁻¹⁹ m²
- Sealed borehole and disturbed bedrock surrounding the borehole were assigned a value of 1 X 10⁻¹⁶ m²
- Hydrostatic fluid pressures were assumed to exist under ambient conditions

Not to Scale: Domain Radius is 100 m, height is 4 km
Borehole (radius 0.15 m) + Disturbed Zone has a cross-sectional area of 1 square meter

Coupled Thermal-Hydrologic Model

- Results indicate upward vertical flow in the borehole driven primarily by thermal expansion, and not by free convection
- Significant upward flow persists for about 200 years at the top of the waste disposal zone
- Lesser upward flow occurs for about 600 years in the borehole at a location 1000 m above the waste

Scenario Selection

- Evaluated comprehensive list of FEPs from Yucca Mountain Project (YMP) and geologic disposal programs in other countries
- Formed three scenarios from retained (screened in) FEPs
 - Transport up borehole
 - Transport up DRZ/annulus around the borehole
 - Transport away from borehole in surrounding rock

Scenario Description - Source

Waste Disposal Zone

- Single borehole with 400 PWRs vertically stacked down a 2000 m disposal zone
- No credit for waste package or waste form degradation
- Inventory (31 radionuclides with decay and ingrowth) consistent with YMP PWR assemblies aged to 2117
- Dissolved concentrations subject to solubility limits

Not to Scale: Domain Radius is 100 m, height is 4 km
Borehole (radius 0.15 m) + Disturbed Zone has a cross-sectional area of 1 square meter

Scenario Description – Borehole Transport

Borehole Sealed Zone

- Radionuclide transport up borehole for 1000 m
- Properties are composite of bentonite seal and excavation disturbed zone (EDZ)
- Constant thermally driven flow (pore velocity = 0.5 m/yr) from top of waste disposal zone for 200 yrs

Not to Scale: Domain Radius is 100 m, height is 4 km

Borehole (radius 0.15 m) + Disturbed Zone has a cross-sectional area of 1 square meter

Geosphere

 Capture of radionuclides from top of borehole sealed zone

- Transport and dilution of radionuclides in geosphere (properties approximate fractured rock and/or sediments)
- Withdrawal of radionuclides to surface/biosphere via pumping well

Modeling Approach

- Source Term
 - Continuous radionuclide source
- Sealed Borehole Transport
 - 1-D analytic solution of advection-dispersion equation with sorption and decay through composite bentonite/EDZ
 - Transport ceases at 200 yrs
- Geosphere Transport
 - Assumed travel time (8000 yrs) and dilution factor (3.16 x 10⁷)
- Dose
 - Assumed exposure pathways consistent with YMP

Preliminary PA Results

- Peak dose to exposed individual is 1.4 x 10⁻¹⁰ mrem/yr at 8200 yrs
- ¹²⁹I is sole contributor to peak dose
- Peak concentration at top of borehole sealed zone (¹²⁹I at 200 yrs) is 5.3 x 10⁻⁸ mg/L
- Peak is due to leading edge of dispersive front center of mass of ¹²⁹I travels ~ 100 m in 200 yrs

Bismuth-based ¹²⁹I sorbents

 $K_{d} = 720 \text{ ml/g}$

 $K_d = 2300 \text{ ml/g}$

- Thermal stability of Bi phases
- Effect of anion competition
- Reversibility
- Modification

