

U.S. NUCLEAR WASTE TECHNICAL REVIEW BOARD

Some Observations on Deep Borehole Disposal of Spent Nuclear Fuel and High-level Nuclear Waste

William M. Murphy David M. Diodato

Workshop on Research Needs for Borehole Disposal Washington, DC

15 March 2010

http://www.nwtrb.gov/

MurphyDiodatoBoreholeDisposal_v2.ppt

General Observations

- Geologic disposal is the most technically viable approach to isolating high-level nuclear wastes and spent nuclear fuel for times approaching perpetuity
- Deep borehole disposal is a technically viable type of geologic disposal

Critical Aspects of Borehole Disposal

- Many potentially suitable lithologies
- Some geologic settings are more suitable than others for safe and reliable borehole disposal
- Engineered elements must function in harmony with natural system characteristics
- To reduce uncertainty and enhance confidence, sustained testing and analysis of geologic and engineered elements critical to system performance is required

Host Rock Selection

- Host rock selection should be based on rock characteristics (not simply lithology)
- Advantageous rock characteristics include:
 - Low permeability
 - High cation exchange capacity/sorption
 - Predictable fracture occurrence and properties

Geologic Setting

- Geologic setting is extremely important to safe and reliable isolation
- Advantageous geologic setting attributes:
 - No natural resources
 - Low heat flux
 - Stable in situ stress regime; geologic stability
 - Reducing geochemical environment
 - Characterized rock and water chemistry

Engineered Systems

- Boreholes should provide sufficient isolation without requiring engineering enhancements
- Engineered systems must operate in harmony with natural system
- Advantageous engineered system attributes:
 - No deleterious materials
 - Compatible with in situ geochemistry
 - Predictable degradation behavior

Uncertainty

- Uncertainty is an inherent attribute of all natural and engineered systems
- To reduce uncertainty / enhance confidence:
 - Waste emplacement should not significantly perturb system
 - All critical system elements must be analyzable over geologic time scales; Natural analogs!
 - Testing, analysis and monitoring programs must be developed and implemented through open and transparent dialog and sustained for long times
 - Expect surprises

Summary

- Geologic isolation of nuclear waste and SNF using deep boreholes is technically feasible
- Many lithologies are potentially suitable, and the geologic setting is critical
- Establishing confidence requires that the total borehole system be analyzable and that testing and analysis is open and sustained